Project N°: IST-1999-13109 Acronym: REHAROB

<u>TECHNICAL DOCUMENTATION OF THE NON-COMMERCIAL PART OF</u> <u>THE 3D MOTION THERAPY MONITORING SYSTEM</u>

Part 1: Design and development of an artificial (dummy) limb

Budapest University of Technology and Economics (HU)
University of Wales Cardiff (UK)
National Institute for Medical Rehabilitation (HU)
University of Rousse (BG)
zebris Medizintechnik GmbH (D)
D9v1_3
2
29/08/2001
University of Rousse
9
2
2
2.2
Public
Daniel Bratanov; Todor Dobrev; Mirolyub Mladenov, Pavel Vitliemov
Prof Vladimir Vitliemov

RÈSUMÈ

Deliverable 9 summarizes the biomechanical and mathematical date used for the design and the development of a dummy upper human limb, as a part of the REHAROB's Physiotherapy Monitoring and Documentation System.

Contents

RÈSUMÈ	2
Contents	3
1. Description of the problem and requirements	4
2. Calculations concerning the construction, reasoned results of design	5
2.1 Geometrical and force parameters of the model	6
2.2 Calculation of the force loads over the joints of the model	9
3. Final design	. 13
3.1 Parts list, list of components	. 19
3.2 Parts and assembly drawings	. 22
4. Algorithms for controlling the working mechanisms under modeling the resistances at the joints	82
5. Structure and basic characteristics of the information - control system	. 84
6. Methods for simulation of muscle resistance	. 85
Appendix I	. 87
Photos of the manufactured parts and some of the commercial components	. 87

1. Description of the problem and requirements

Development of an artificial (dummy) upper limb with built in force/torque sensors for the test of the dynamic behavior of the REHAROB station.

During the development of the Dummy limb the following requirements were defined:

- Adaptive lengths of the two upper limb segments the Dummy limb has to cover a wide range of possible patients with diverse physical characteristics and thus different lengths of the upper and lower arms;
- Simulate variable resistance in the arm joints
- Cover the motion range of the human arm the dummy limb is to be able to perform all movements of a human upper limb with a typical motion range;
- Anthropomorphic format the model has to resemble the anthropomorphic structure of a human upper limb, so that the testing of the REHAROB cell can be carried out as close as possible to the real situation with a patient;
- SecSimulate both left and right arms the model has to be symmetrically neutral

Set Execute all rehabilitation exercises

Zenclude the shoulder-clavical complex

2. Calculations concerning the construction, reasoned results of design

The upper limb as an object of mechanic-mathematical modeling is considered as a system of rigid bodies (links), connected by specific method. The simplifications in the creation of the model consist not only the number of the links (bones), but also their shape, the type of the kinematics couples (joints) and the forces acting at the model links (muscle forces).

The bones are modeled as rigid links, which geometry must be taken into account for determination of the co-ordinates of the muscle tendons' capture places and the mass centers, while the joints are modeled as an ideal kinematics couples. The defined in that way kinematics schemes allowed the use of different mechanic methods, theory of the mechanisms and machines for the investigation of the modeled object.

The modeling of the bones as rigid links could be assumed as a good enough approximation, because the processes in the soft tissues, the blood movement and the muscle's deformation do not influence the mass-inertia characteristics of the links.

Never the less that the experiments shows that the center of rotation of the joints during a real movement is placed not in a point but in a small area, the error in calculation of the shoulders of the muscle forces is between 2.5%- 3.1% if we assume that the center of rotation is a point. The coefficient of friction in the joints is very small - from 0.003 to 0.025 and the energy losses for surmounting the friction are small too. In that case the joints could be assumed with good approximation for ideal kinematics couples. This is true if we take in account only the constrains in the joints movements provoked of the friction between the joints surfaces. But restrictions among the movement have also the joint capsule and the ligaments. They restrict the movement to an anatomically acceptable. This anatomically acceptable swish depends certainly also from the shape of the joints surfaces.

The kinematical structure of the model (Fig.1) must imitate the movements in clavicle attached to the sternum joint (retraction – protraction and elevation – depression), in the shoulder joint (abduction – adduction, flexion – extension and internal – external rotation) and in the elbow joint (flexion – extension and pronation – supination).

To make possible the estimation of the F/T parameters during the various joint movements and in order to realize controlled resistance reactions the kinematics structure of the model is developed as an open kinematics chain. It is built from R couples of Vth class. The clavicle attached to the sternum joint is organized by two couples which axes cross point corresponds to the location of the physical center of this joint. Two couples also realize the elbow joint. More different is the shoulder joint. In the model is imitated a spherical joint by four R couples of Vth class, defining fixed center of rotation corresponding to the physical center of the joint. The input of redundancy in the kinematics schema of the shoulder joint is determined by the necessity of overcoming possible singularity arising in joints organized with three R couples of Vth class.

To a bigger part it is dependant to the requirement the dummy limb to be as close as possible to the shape and parameters of the human arm. There is a potentiomentric sensor built in each kinematics couple for measurement of the current joint coordinate. The imitation of muscle resistance (spasm) is executed by DC motor-gearboxes and servo brakes. The change of the forces and torques of the fore and upper arm joints is measured by 6 component F/T sensors.

2.1 Geometrical and force parameters of the model

The model's realization and the choice of its components depend on the solutions of the tasks, formulated below:

- *Meters Geometrical parameters of the links;*
- Mathematical Initiation of the resistant reactions;
- Imitation of the threshold's values restrictions of the joints' angles during the separate movements;
- EX Fixation of the initial position of the model before starting the teaching process and before its grasping by the robots;
- Multis the maximum resistant torques at the ligaments?

Table 1 – Geometrical parameters of the model

Segment	Anthropomorphic length, cm	Segment's length, cm	Weight, kg
Upper arm	35.9	32	2.8
Fore arm	26.6	28.5	1.4
Hand	20.4	7.4	0.35

Some tentatively values about the resistant torques at the elbows and shoulder's joints (Fig.2) are:

Elbow's joint Telbow⁻¹⁸ N x 0.18 m = 3.2 N.m Shoulder's joint Tshoulder⁻²⁸ N x 0.16 m + 18 N x 0.5 m = 13.5 N.m

The torque about the shoulder's joint has a significant meaning. An electromagnet brake creating such a resistant torque has a weight around 1.3 kg and dimensions 85 mm X 47 mm. The weight of the three brakes, which would be specified about the three movements at the shoulder's joint, would vastly exceed the weight of the forearm (segment). The weight of the electromagnet brakes at the elbows joint is about 1.5 kg and dimensions 60 mm X 43 mm.

Where to position the F/T sensors?

The F/T sensors have to be fitted near the joints. If they were positioned after the joints, would have to load not only the force loads, but also the load from the weight of the joints and the resistant elements in them. More expediently is that the F/T sensors to be fitted before the joints. The F/T sensors will be more sensitive to the external force acting over the model at this case.

What should be the measurement ranges of the F/T sensors?

 Table 2 - Geometrical and general parameters:

Part	Mass Kg	Length M	Position of centers of mass in L.C.S., m		Principal to Kg.m ²	ques of inertia,		
			x	у	Z	I _{xx}	I _{yy}	I _{zz}
Upper arm	2.1	0.305	0.146	0	0	2,285. 10 ⁻³	17,88. 10 ⁻³	17,88. 10 ⁻³
Lower arm	1.275	0.270	0.110	0	0	0,25. 10 ⁻³	7,06. 10 ⁻³	7,06. 10 ⁻³
Hand	0.45	0.190	0.076	0	0	0,38. 10 ⁻³	0,38. 10 ⁻³	0,38. 10 ⁻³

A and B (Fig.3) are points of forces acting over the orthosis. It is considered that the relation - upper arm and forearm is divided into ratio 2:1.

Forces acting over the orthosis

- P_1 weight of the upper arm = 21 N;
- P_2 weight of the forearm = 12.75 N;
- P_3 weight of the hand = 4.5 N.

N: of the sensor	F/T N; N.m	Average value	0.5 x average value	1.5 x average value	Maximum value
1 - sensor on the	Fx	11.73			54.7
	Fy	19.83			80
	Fz	28,13			106.2
	Тх	1,80			6.37
	Ту	1,72			7.21
	Tz	1,09			3.39
2 - sensor on the	Fx	120,55			240
	Fy	13,25			35
	Fz	17,55			153.9
	Тх	0,17			0.49
	Ту	2,00			6.74
	Tz	0,63			1.57
3 - compressing	Fx	0.33			0.5
tests	Fy	1.77			2.8
	Fz	0.73			1.05
	Тх	0.05			0.07
	Ту	0.35			0.60
	Tz	0.05			0.07

Table 3 - Parameters of forces acting over the orthosis:

The data is collected from the results, presented by BUTE. The received maximum values, under the tests have to be considered as exceptions because significantly differ from most of the results.

2.2 Calculation of the force loads over the joints of the model

It is considered that the F/T sensors are situated near the geometrical centers of the shoulder and elbow's joints of the model (Fig.4). The moments will be calculated about co-ordinate systems with centers coinciding with the centers of the joints. The position of the orthosis changes under the different experiments in a plane, perpendicular to the axis of the corresponding unit, as the direction of the axes Y and Z. Only the direction of the axis X coincides with the axis of the unit. The signs of the F/T components are not presented and can be considered as positive.

The F/T sensors on the model are with a fixed position. The axis Z of the F/T sensors on the model coincides with the axis X of the sensors of the orthosis. The horizontal situation of the model is analyzed. The calculations will be about the higher of the forces Fy and Fz, because the axes Y and Z of the F/T sensors on the orthosis change their positions under the change of the positions of the orthosis towards the axes of units. It is considered that points A and B (points of force acting) are situated at distance, 0.1 m from the axes of the units. It is considered the worst case to calculate Fy and Tx, when the direction of the external force coincides with the direction of the force of the weight P. The calculations are done about two cases – there is force acting only over point B and there is force acting over both points A and B.

Force acting only over point B

Forces and torques, measured by the 1st sensor:

$$\begin{split} F_{x1} &= F_{y/zb}; \\ F_{y1} &= F_{y/zb} + P_2 + P_3; \\ F_{z1} &= F_{xb}; T_{x1} = 0.11P_2 + 0.18F_{y/zb} + 0.346P_3 + 0.1F_{xb}; \\ T_{y1} &= 0.180F_{y/zb}; \\ T_{z1} &= 0.1F_{y/zb} \end{split}$$
(1)

Forces and torques, measured by the 2nd sensor:

$$\begin{split} F_{x2} &= F_{y/zb}; \\ F_{y2} &= F_{y/zb} + P_1 + P2 + P_3; \\ F_{z2} &= F_{xb}; T_{x2} = 0.146P_1 + 0.415P_2 + 0.651P_3 + 0.485F_{y/zb} + 0.1F_{xb}; \\ T_{y2} &= 0.485F_{y/zb}; \\ T_{z2} &= 0.1F_{y/zb} \end{split}$$

Force acting over points A and B

Forces and torques, measured by the 1st sensor:

It could be considered that P2, P3 and the force acting can define the force load on the 1 sensor over point B. The force acting over point A has a supporting role about the elbow's joint and is not logically to consider that this force could be an assumption for movements at the elbow's joint. Because of this the components of the forces and the torques, measured by the 1 sensor can be defined using the relations (1).

Forces and torques, measured by the 2nd sensor:

$$\begin{split} F_{x2} &= F_{y/za} + F_{y/zb}; \\ F_{y2} &= P_1 + P2 + P_3 + (-) \ F_{y/za} + F_{y/zb}; \\ F_{z2} &= F_{ya} + F_{xb}; \\ T_{x2} &= 0.146P_1 + 0.415P_2 + 0.651P_3 + (-) \ 0.203F_{y/za} + 0.485F_{y/z1} + 0.1F_{xa} + F_{xb}; \\ T_{y2} &= 0.203F_{y/za} + 0.485F_{y/zb}; \end{split}$$

$T_{z2} = 0.1F_{y/za} + 0.1F_{y/zb}$

(3) The resistant muscle reactions at the both joints, which would ensure the static balance of the model, are not reflected in the model for calculation the force acting. The directions of the forces $F_{V/Z}$ on the points A and B under the most rehabilitation procedures is opposite. The force on point A under the motion of the elbow's joint should have supporting, not an active function. It could be considered that the high values of the forces on point A are measured during such case, where FA compensate the action of FB, the weight of the hand and the force reactions in the shoulder.

Results

Average values of the force components at point B:

FXB=11.73 N; FYB=19.83 N; FZB=28.13 N; FY/ZB=28.13 N (higher of the values FYB and FZB)

Average values of the force components at point A:

 $F_{XA}=120.55$ N; $F_{YA}=13.25$ N; $F_{ZA}=17.55$ N; $F_{Y/ZA}=17.55$ N (higher of the values FYA and FZA)

Results from the dependences (1) - calculations are done regarding the average values of the force components:

Fy1=48.53 N;	Ty1=5.06 N.m;
F _{Z1} =11.73 N;	T _{X1} =9.20 N.m;
F _{X1} =28.13 N;	TZ1=2.81 N.m
the dependences (2):	
E 00 10 M	

F _{X2} =28.13 N;	$T_{X2}=26.10 \text{ N.m};$
Fy2=66.38 N;	Ty2=13.64 N.m;
FZ2=11.73 N;	TZ2=2.81 N.m

Results from the dependences (3) – plus in front of the FY/ZA:

F _{X2} =45.68 N;	TX2=41.72 N.m;
F _{Y2} =83.93 N;	Ty2=17.21 N.m;
FZ2=132.28 N;	TZ2=4.57 N.m

Results from the dependences (3) – minus in front of the FY/ZA: F_{X2}=45.68 N; Tx2=34.60 N.m; Fy2=48.83 N; Ty₂=17.21 N.m; F72=132.28 N; T₇₂=4.57 N.m

Maximum values of the force components:

FXBmax=54.70 N; FYBmax=80 N; FZBmax=106.20 N; FY/ZBmax=80 N;

FXAmax=240 N; FYAmax=35 N; FZAmax=153.90 N; FY/ZAmax=240 N;

First sensor - elbow's joint

Results from

Needed ranges:

$$F_{X}=28.13 \text{ N}$$

$$F_{Y}=48.53 \text{ N}$$

$$F_{Z}=11.73 \text{ N}$$

$$T_{X}=9.20 \text{ N.m}$$

$$T_{Y}=5.06 \text{ N.m}$$

$$T_{Z}=2.81 \text{ N.m}$$
Second sensor – force acting only over point A
Needed ranges:

F_X=28.13 N F_Y=66.38N F_Z=11.73 N T_X=26.10 N.m T_Y=13.64 N.m T_Z=2.81 N.m

Force acting over points A and B (minus)

Needed ranges:

FX=45.68 N FY=48.53 N FZ=132.28 N TX=34.60 N.m

TY=17.21 N.m TZ=4.57 N.m

3. Final design

The final design of the artificial human limb has 8 DOF, of which 6 are actuated by 6 DC motors and the other 2 use DC brakes, to simulate the resistance of the spasticity in the patient's arm. All DOF have an angular sensor equipped for position feedback.

Two force/torque sensors are mounted on the lower arm and upper arm segments of the dummy limb for measuring the forces and torques acting in the joints of the model.

Through telescopic bushings the lower arm and upper arm segments of the dummy limb realize the adjustable lengths of these segments. The lengths of the two segments are as follows:

Lower arm: Min = 237 mm

Max = 297 mm

Upper arm: Min = 266.5 mmMax = 326.5 mm

The total weight of the dummy limb is around 11,4 kg. The weight of the two segments has to correspond to the average weight of the expected patients and is estimated to be as follows:

Lower arm (+ hand): Weight = 2.9 kg

Upper arm: Weight = 1.9 kg

VOLUME = 2.5940338e+06 MM^3 SURFACE AREA = 1.0704861e+06 MM^2 AVERAGE DENSITY = 4.3698260e-03 GRAM / MM^3 MASS = 1.1335476e+04 GRAM

CENTER OF GRAVITY with respect to _PM01000000 coordinate frame: X Y Z 6.7580920e+01 -4.2295659e+01 -1.7852742e+02 MM

INERTIA with respect to _PM01000000 coordinate frame: (GRAM * MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 5.0382366e+08 8.4764829e+07 2.0836033e+08 Iyx Iyy Iyz 8.4764829e+07 8.5868011e+08 -1.1553200e+08 Izx Izy Izz 2.0836033e+08 -1.1553200e+08 4.5792933e+08

INERTIA at CENTER OF GRAVITY with respect to _PM01000000 coordinate frame: (GRAM * MM^2)

INERTIA TENSOR:

Ixx Ixy Ixz 1.2226063e+08 5.2363735e+07 7.1597272e+07 Iyx Iyy Iyz 5.2363735e+07 4.4562420e+08 -2.9938556e+07 Izx Izy Izz 7.1597272e+07 -2.9938556e+07 3.8587987e+08

PRINCIPAL MOMENTS OF INERTIA: (GRAM * MM^2) I1 I2 I3 9.4427874e+07 3.9954996e+08 4.5978687e+08

ROTATION MATRIX from _PM01000000 orientation to PRINCIPAL AXES:

0.95401	0.28816	-0.08267
-0.16366	0.26957	-0.94897
-0.25117	0.91886	0.30433

ROTATION ANGLES from _PM01000000 orientation to PRINCIPAL AXES (degrees): angles about x y z 72.219 -4.742 -16.807

RADII OF GYRATION with respect to PRINCIPAL AXES: R1 R2 R3 9.1270455e+01 1.8774382e+02 2.0139950e+02 MM

MASS PROPERTIES OF COMPONENTS OF THE ASSEMBLY (in assembly units and the _PM01000000 coordinate frame)

DENSITY MASS C.G.: X Y Z

PM01010000 MATERIAL: UNKNOWN 5.70876e-03 1.26617e+03 -3.57193e+00 9.03454e-06 -2.33156e+01

PM01030000 MATERIAL: UNKNOWN 4.32635e-03 1.28095e+03 -7.37097e+01 -4.16137e+00 -3.40000e+01

PM01020000 MATERIAL: UNKNOWN 5.47594e-03 1.40047e+03 -7.14988e+01 4.74616e+01 -1.57543e+02

PM01040000 MATERIAL: UNKNOWN 5.01962e-03 2.62021e+03 -6.97976e+01 -6.23992e+01 -2.34000e+02

PM01060000 MATERIAL: UNKNOWN 3.44446e-03 1.87823e+03 8.79845e+01 -7.72738e+01 -2.34787e+02

PM01050000 MATERIAL: UNKNOWN 3.83661e-03 2.88945e+03 3.40122e+02 -8.02721e+01 -2.33910e+02

Fig.5 Front view of the Dummy limb

Fig.6 Side view of the Dummy limb

 $\ensuremath{\text{Fig7}}-\ensuremath{\text{Top}}\xspace$ view of the Dummy limb

3.1 Parts list, list of components

The following table gives a list of the components of the dummy limb (PM.01.00.00.00), divided into the main assemblies.

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM TYPE	QTY
1.	PM.01.01.00.00	ARM BASE	ASSEMBLY	1
1.1	PM.01.01.00.05	BASE	PART	1
1.2	PM.01.01.00.04	CONSOLE	PART	2
1.3		DC MOTOR/GEAR	PART	1
1.4	PM.01.01.00.02	FLANGE	PART	1
1.5		SCREW ISO M5X12	PART	8
1.6	PM.01.01.00.03	TOOTHED BUSHING	PART	1
2.	PM.01.02.00.00	CLAVICLE JOINT I	ASSEMBLY	1
2.1		A.S. SCREW	ASSEMBLY	4
2.2	PM.01.02.01.00	FORK	ASSEMBLY	1
2.3	PM.01.02.00.09	A.S. CONSOLE	PART	1
2.4		ANGULAR SENSOR	PART	1
2.5		BEARING 8X22X7	PART	2
2.6	PM.01.02.00.04	BEARING AXLE	PART	1
2.7	PM.01.02.00.02	CONICAL GEAR	PART	1
2.8	PM.01.02.00.05	CONICAL GEAR II	PART	1
2.9	PM.01.04.00.06	COTTER 1.8X3X15	PART	1
2.10		DC MOTOR/GEAR	PART	1
2.11	PM.01.02.00.08	NUT M8 SPECIAL	PART	1
2.12		SCREW ISO M3X8	PART	4
2.13		SCREW ISO M4X20	PART	4
2.14		SCREW ISO-M4 X 6	PART	6
2.15	PM.01.02.00.17	SHOULDER FORK	PART	1
2.16	PM.01.02.00.06	SPACER	PART	1
2.17	PM.01.02.00.10	TOOTHED BUSHING	PART	1
2.18		WASHER ISO M4	PART	4
3.	PM.01.03.00.00	CLAVICLE JOINT II	ASSEMBLY	1
3.1		A.S. SCREW	ASSEMBLY	6
3.2	PM.01.03.00.12	A.S. SUPPORT	PART	2
3.3		ANGULAR SENSOR	PART	2
3.4		BEARING N 12XN 28X 8	PART	4
3.5	PM.01.03.00.14	BEARING AXLE I	PART	1
3.6	PM.01.03.00.23	BEARING AXLE II	PART	1
3.7	PM.01.03.00.13	BEARING BED	PART	3
3.8	PM.01.04.00.08	BEARING BUSHING	PART	1
3.9	PM.01.04.00.05	BUSH	PART	1
3.10	PM.01.03.00.17	САР	PART	1
3.11		CIRCLIP D28	PART	1

3.12		CIRCLIP D12 DIN471	PART	3
3.13	PM.01.04.00.06	COTTER 1.8X3X15	PART	1
3.14		DC MOTOR/GEAR	PART	1
3.15	PM.01.04.00.19	INSERT FOR O-RING	PART	1
3.16	PM.01.03.00.11	MOTOR SHELL CL.	PART	1
3.17		NUT M12X0.5 H=4	PART	1
3.18		SCREW ISO-M4 X 6	PART	8
3.19		SCREW ISO-M4 X 12	PART	12
3.20		SCREW ISO-M4 X 16	PART	8
3.21	PM.01.04.00.33	TOOTHED BUSHING	PART	1
4.	PM.01.05.00.00	LOWERARM SEGMENT	ASSEMBLY	1
4.1		A.S. SCREW	ASSEMBLY	6
4.2	PM.01.05.01.00	INSIDE BUSHING	ASSEMBLY	1
4.3		SCREW M4X12 & WASHER	ASSEMBLY	4
4.4	PM.01.05.00.28	A.S. CAP	PART	1
4.5	PM.01.05.00.01	A.S. CONSOLE	PART	1
4.6	PM.01.05.00.13	ADJUSTING SCREW	PART	1
4.7		ANGULAR SENSOR	PART	2
4.8		BEARING N 10XN 26X 8	PART	2
4.9	PM.01.05.00.19	BEARING AXLE	PART	1
4.10	PM.01.05.00.26	BEARING CAP	PART	1
4.11	PM.01.05.00.36	BEARING CAP	PART	1
4.12		BEARING D15XD32X9	PART	1
4.13		BEARING D8XD19X6	PART	2
4.14		CIRCLIP D10	PART	1
4.15		CIRCLIP D19	PART	1
4.16	PM.01.05.00.17	CONICAL GEAR	PART	1
4.17	PM.01.05.00.22	CONICAL GEAR II	PART	1
4.18	PM.01.04.00.06	COTTER 1.8X3X15	PART	1
4.19	PM.01.05.00.21	COTTER 3X2,5X15	PART	1
4.20		DC BRAKE	PART	1
4.21		DC MOTOR/GEAR	PART	1
4.22	PM.01.05.00.37	F/T AXLE	PART	1
4.23		F/T SENSOR	PART	1
4.24		HEX. NUT M8X1 H=3.5	PART	1
4.25	PM.01.05.00.16	LOWERARM FORK	PART	1
4.26	PM.01.05.00.12	MOTOR CASING	PART	1
4.27		NUT M12X0.5 H=4	PART	1
4.28	PM.01.05.00.08	OUTER BUSHING	PART	1
4.29		SCREW ISO M3X6	PART	11
4.30		SCREW ISO M3X8	PART	8
4.31		SCREW ISO M3X12	PART	4
4.32		SCREW ISO M4X40	PART	4
4.33		SCREW ISO M6X10	PART	4
4.34	PM.01.05.00.23	SPACER	PART	1
4.35	PM.01.05.00.40	SPACER 1	PART	1
4.36	PM.01.05.00.38	SPACER 2	PART	1
4.37	PM.01.05.00.32	TOOTHED BUSH	PART	1

4.38	PM.01.05.00.42	TOOTHED BUSHING	PART	1
5.	PM.01.04.00.00	SHOULDER	ASSEMBLY	1
5.1		A.S. SCREW	ASSEMBLY	3
5.2		SCREW M4X12 & WASHER	ASSEMBLY	16
5.3	PM.01.04.00.21	A.S. CONSOLE	PART	1
5.4		ANGULAR SENSOR	PART	2
5.5		BEARING N 10XN 26X 8	PART	2
5.6		BEARING N 12XN 28X 8	PART	2
5.7	PM.01.04.00.08	BEARING BUSHING	PART	1
5.8	PM.01.04.00.13	BEARING CASING FOR N 26	PART	1
5.9	PM.01.04.00.32	BEARING INSERT	PART	1
5.10	PM.01.04.00.25	BEARING INSERT FOR 28X8	PART	1
5.11	PM.01.04.00.05	BUSH	PART	1
5.12	PM.01.04.00.15	BUSH-AXLE	PART	1
5.13	PM.01.04.00.34	BUSHING II	PART	1
5.14	PM.01.04.00.37	CENTER BUSHING	PART	3
5.15		CIRCLIP D10	PART	1
5.16		CIRCLIP D28	PART	2
5.17		CIRCLIP D12 DIN471	PART	2
5.18	PM.01.04.00.31	CONSOLE III	PART	1
5.19	PM.01.04.00.26	CONSOLE MOTOR	PART	1
5.20	PM.01.04.00.06	COTTER 1.8X3X15	PART	2
5.21	PM.01.04.00.12	CROSS YOKE	PART	1
5.22		DC MOTOR/GEAR	PART	2
5.23	PM.01.04.01.00	FORK 1	PART	1
5.24	PM.01.04.02.00	FORK 2	PART	1
5.25	PM.01.04.00.19	INSERT FOR O-RING	PART	1
5.26	PM.01.04.00.36	NUT SPECIAL	PART	1
5.27	PM.01.04.00.23	PULLEY	PART	1
5.28	PM.01.04.00.39	PULLEY BUSHING	PART	1
5.29		RING D26X0,5	PART	1
5.30		SCREW ISO M4X10	PART	4
5.31		SCREW ISO M6X10	PART	4
5.32		SCREW ISO-M4 X 6	PART	12
5.33	PM.01.04.00.16	SPACER	PART	1
5.34		TOOTHED BELT PULLEY	PART	2
5.35	PM.01.04.00.33	TOOTHED BUSHING	PART	1
6.	PM.01.06.00.00	UPPERARM	ASSEMBLY	1
6.1		A.S. SCREW	ASSEMBLY	4
6.2	PM.01.05.00.01	A.S. CONSOLE	PART	1
6.3	PM.01.06.00.19	ADJUSTMENT SCREW	PART	1
6.4		ANGULAR SENSOR	PART	1
6.5		BEARING N 10XN 26X 8	PART	2
6.6	PM.01.05.00.36	BEARING CAP	PART	1
6.7	PM.01.06.00.12	CENTER PIN	PART	1
6.8		CIRCLIP D10	PART	1
6.9		DC BRAKE	PART	1
6.10	PM.01.06.00.09	F/T AXLE	PART	1

6.11		F/T SENSOR	PART	1
6.12	PM.01.06.00.10	INSIDE CASING	PART	1
6.13	PM.01.06.00.01	OUTER CASING	PART	1
6.14		SCREW ISO M3X6	PART	4
6.15		SCREW ISO M3X8	PART	10
6.16		SCREW ISO M4X40	PART	4
6.17	PM.01.05.00.40	SPACER 1	PART	1
6.18	PM.01.05.00.38	SPACER 2	PART	1
6.19	PM.01.05.00.42	TOOTHED BUSHING	PART	1

3.2 Parts and assembly drawings

<u>168±0,2</u>	
	_
9 14 12 6 18 15 11 16 SECTION A-A	PM.01.02.00.00 CLAVICLE JOINT Scale File PM01020000 Sheet: 1 1 1
INDEX ITEM NAME SUB-ITEM NAME ITEM TYPEQTY	EX ITEM NAME SUB-ITEM NAME ITEM TYPE QTY

	4 1	IEM N	IAME	SOB-ILEM NAME	IIIFW I	IYPE	UIY
1				A.S. SCREW	ASSEM	IBLY	4
				A,S, BRACKET	PAR	۲.	1
				Screw M3 x 5 (ISD)	PAR	?T	1
				Washer M3	PAR	T	1
2	PM.	01.02	00.02	CONICAL GEAR	PAR	T	1
3	PM.	.01.02	2.01.00	FORK	ASSEM	IBLY	1
	PM.	.01.02	2.01.03	FORK ARM LEFT	PAR	2T	1
	PM	.01.02	2,01,11	FORK ARM RIGHT	PAR	2T	1
	PM.	.01.02	2.01.02	FORK BASE	PAR	2T	1
	PM.	.01.02	2.01.08	Fork ear	PAR	CT.	1
				Nut M4	PAR	CT.	2
	PM.	.01.02	2.01.10	PEG	PAR	?T	1
	PM.	.01.02	2.01.06	RING	PAR	T	1
				Screw ISD M4 x 10	PAR	CT.	1
	PM.	.01.02	2.01.07	ISTUD BOLT	PAR	2T	1
	1014	0102	<u>' </u>	BEARING AXLE	PAR	2T	1
4	<u>РМ.</u>	01.02	100101				
4	РМ. РМ.	01.02	:00.05	CONICAL GEAR II	PAR	RT	1
4 5	<u>РМ.</u> РМ.	.01.02	1.00.05	CONICAL GEAR II	PAR	RT	1
4 5	PM. PM;	01.02		CONICAL GEAR II PM.01.02.	00.00)	1
4 5	PM. PM.			PM.01.02. CLAVICLE JOIN	00.00) Sc	1 ale
4 5			20000	PM.01.02. CLAVICLE JOIN	00.00) Sc 11	1 ale 1

				_		
INDEX	ITEM NAME	SUB-ITEM NAME	ITEM	TYPE	QTY	
6	PM.01.02.00.06	SPACER	PAF	RL I	1	
7		ANGULAR SENSOR	PAF	2T	1	
8	PM.01.02.00.08	NUT M8 SPECIAL	PAF	RT	1	
9	PM.01.02.00.09	A.S. CONSOLE	PAF	SL 12	1	
10	PM.01.02.00.10	TOOTHED BUSHING	PAF	2T	1	
11		BEARING 8x22x7	PAF	RL I	2	
12	PM.01.04.00.06	COTTER 1.8×3×15	PAF	RL I	1	
13		DC MOTOR/GEAR	PAF	2T	1	
14		SCREV ISD M3x8	PAF	RT	4	
15		SCREW ISD M4×20	PAF	RL	4	
16		Screw [SO-M4 × 6	PAF	RT I	6	
17	PM.01.02.00.17	SHOULDER FORK	PAF	RT	1	
18		WASHER ISD M4	PAF	RT .	4	
\vdash		PM.01.02.00.00				
					ale	
L		CLAVICLE JUIN		<u>1</u> :	1	
F	ILe PM01020000			She 3 c	eet: of 3	

E-MARCE D

Page 34 / Deliverable 9

ET P

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM TYPE	QTY
1	PM.01.04.01.00	FORK 1	PART	1
2		A.S. SCREW	ASSENBLY	3
		A.S. BRACKET	PART	1
		Screw M3 x 5 (ISD)	PART	1
		Washer M3	PART	1
3		ANGULAR SENSOR	PART	2
4		CIRCLIP D28	PART	2
5	PM.01.04.00.05	Bush	PART	1
6	PM.01.04.00.06	COTTER 1.8×3×15	PART	2
7		CIRCLIP d12 DIN471	PART	2
8	PM.01.04.00.08	BEARING BUSHING	PART	1
9		DC MOTOR/GEAR	PART	2
10		RING D26X0,5	PART	1
11		SCREW ISD M4×10	PART	4
12	PM.01.04.00.12	CROSS YOKE	PART	1
13	PM.01.04.00.13	BEARING CASING FOR Ø26	PART	1
14		CIRCLIP d10	PART	1
15	PM.01.04.00.15	BUSH-AXLE	PART	1
16	PM.01.04.00.16	SPACER	PART	1
17		BEARING Ø10ר26×8	PART	2
18		SCREW M4×12 & WASHER	ASSENBLY	16
		Screw ISO-N4 x 12	PART	1
		VASHER ISD M4	PART	1
		- PM.01.04.00.00		
		SHOULDER	Sco 1: 1	le 1
	File PN01040000		Shee 2 of	et: 3

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM TYPE	QTY	
19	PM.01.04.00.19	INSERT FOR D-RING	PART	1	
20		TODTHED BELT PULLEY	PART	2	
21	PM,01,04,00,21	A,S, CONSOLE	PART	1	
55	PM.01.04.00.36	NUT SPECIAL	PART	1	
23	PM.01.04.00.23	PULLEY	PART	1	
24	PM.01.04.00.37	CENTER BUSHING	PART	3	
25	PM.01.04.00.25	BEARING INSERT FOR 28	8 PART	1	
26	PM.01.04.00.26	CONSOLE MOTOR	PART	1	
27	PM.01.04.00.39	PULLEY BUSHING	PART	1	
28		BEARING Ø12ר28×8	PART	2	
29		SCREW ISD M6×10	PART	4	
30	PM.01.04.02.00	FORK 2	PART	1	
31	PM.01.04.00.31	CONSOLE III	PART	1	
32	PM.01.04.00.32	BEARING INSERT	PART	1	
33	PM.01.04.00.33	TOOTHED BUSHING	PART	1	
34	PM.01.04.00.34	BUSHING II	PART	1	
35		Screw ISO-M4 × 6	PART	12	
		PM.01.04.00.00			
		SHOULDER	Sco	le 1	
				<u> </u>	
			She	eti f 3	
L	1 1	1			

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM	TYPE	QTY
1	PM.01.05.00.01	A.S. CONSOLE	PA	RT	1
2		A.S. SCREW	ASSE	MBLY	6
		A.S. BRACKET	PA	RT	1
		Screw M3 x 5 (ISD)	PA	RT	1
		Washer M3	PA	RT	1
ß		SCREW M4x12 & WASHER	ASSE	MBLY	4
		Screw ISO-M4 x 12	PA	RT	1
		WASHER ISD M4	PA	RT	1
4		ANGULAR SENSOR	PA	RT	2
Ŋ		BEARING Ø10xø26x8	PA	RT	2
6	PM.01.05.01.00	INSIDE BUSHING	ASSE	MBLY	1
	PM.01.05.01.01	BUSHING	PA	RT	1
	PM.01.05.01.02	RING	PA	RT	1
		SCREW ISO M3×6	PA	RT	2
		SCREW ISD M3x12	PART		2
7		BEARING D15×D32×9	PART		1
8	PM.01.05.00.08	DUTER BUSHING	PART		1
P		BEARING D8×D19×6	PART		2
10		CIRCLIP d10	PART		1
11		CIRCLIP D19	PART		1
12	PM.01.05.00.12	MOTOR CASING	PART		1
13	PM.01.05.00.13	ADJUSTING SCREW	PART		1
14	PM.01.04.00.06	COTTER 1.8×3×15	PART		1
15		DC BRAKE	PA	RT	1
16	PM.01.05.00.16	LOWERARM FORK	PART		1
					1
		PM.01.05.00.00			
		I DUEDADM SEGMENIT SCA		le	
		LUWERARM SEUMENI 1:1		1	
F	- il e PM01050000			She 2 of	et: 3

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM	TYPE	QTY
17	PM.01.05.00.17	CONICAL GEAR	PA	ART	1
18		DC MOTOR/GEAR	PART		1
19	PM.01.05.00.19	BEARING AXLE	PART		1
20		F/T SENSOR	PART		1
21	PM.01.05.00.21	COTTER 3x2,5x15	PART		1
22	PM.01.05.00.22	CONICAL GEAR II	PART		1
23	PM.01.05.00.23	SPACER	PA	N RT	1
24		HEX. NUT M8×1 H=3.5	P4	ART	1
25		NUT M12×0.5 H=4	PA	hrt	1
26	PM.01.05.00.26	BEARING CAP	PA	ART	1
27		SCREW ISD M3x6	PA	ART	11
28	PM,01,05,00,28	A,S, CAP	PA	ART	1
29		SCREW ISD M3×8	PA	ART	8
30		SCREW ISD M3×12	PART		4
31		SCREW ISD M4×40	PA	ART	4
32	PM.01.05.00.32	TOOTHED BUSH	PART		1
33		SCREW ISD M6x10	PART		4
34	PM.01.05.00.40	SPACER 1	PART		1
35	PM.01.05.00.42	TOOTHED BUSHING	PART		1
36	PM.01.05.00.36	BEARING CAP	PA	hRT	1
37	PM.01.05.00.37	F/T AXLE	PA	ART	1
38	PM.01.05.00.38	SPACER 2	PA	ART	1
		- PM.01.05.00.00			
		- LOWERARM SEGMENT		Sca 1: 1	le 1
F	- il <i>e</i> PM01050000			She	et:

		PM.01.05.00.12	
		MOTOR CASING	Scale 1 : 1
File	PM01050012	AL	

INDEX	ITEM NAME	SUB-ITEM NAME	ITEM TYPE	QTY
1	PM.01.06.00.01	DUTER CASING	PART	1
2		A.S. SCREW	ASSEMBLY	4
		A.S. BRACKET	PART	1
		Screw M3 x 5 (ISD)	PART	1
		Washer M3	PART	1
3	PM.01.05.00.01	A.S. CONSOLE	PART	1
4	PM.01.05.00.42	TOOTHED BUSHING	PART	1
Ŋ		ANGULAR SENSOR	PART	1
6		DC BRAKE	PART	1
7	PM.01.05.00.36	BEARING CAP	PART	1
8		F/T SENSOR	PART	1
ſ	PM.01.06.00.09	F/T AXLE	PART	1
10	PM.01.06.00.10	INSIDE CASING	PART	1
11		SCREW ISD M3x6	PART	4
12	PM.01.06.00.12	CENTER PIN	PART	1
13	PM.01.05.00.38	SPACER 2	PART	1
14	PM.01.05.00.40	SPACER 1	PART	1
15		BEARING Ø10ר26×8	PART	2
16		CIRCLIP d10	PART	1
17		Screw ISD M3x8	PART	10
18		SCREW ISD M4×40	PART	4
19	PM.01.06.00.19	ADJUSTMENT SCREW	PART	1
		РМ.01.06.00.00		
			1	1
F	ile PM01060000		Sh	ppt:

4. Algorithms for controlling the working mechanisms under modeling the resistances at the joints

Two possibilities are analyzed: creation of the resistance using a direct-current motor with built-in reduction gear (MR) and with an electromagnet brake.

Resistance modeling at the joint using MR.

A reduction gear with a two-directional transmission of the movement will be used. The torque Tx would be measured and the angle (?) of rotation around the same axis.

Initial position - robots grasp the orthosis at the initial position and start the movement into the direction + (positive). A functional converter is included at the control of the MR to be possible the creation of the resistance into two-directions of rotations at the joint and the change of the specifying torque depending on the value of the angle (?). Two functions would be realized:

Tdefined =sign??.T (4) or Tdefined =sign??.f(q) (5)

Principle of action

The direction of movement at the beginning of the cycle is + (positive), which defines a positive value of the specifying torque at the beginning of the movement. The MR should be rotated in - (minus) direction in order to be created that value at the joint because the resistance of the reduction gear will be not able to create the needed resistant torques.

The MR will reversing when will be reached the value $T_{spec}=T_{?}$ and as a result from the inertia of the system ?T will be minus value. The value T_? is reducing under the new direction of movement (+). The MR changes its direction of rotating at ?T=0. A varitype regime will appear around the specified value T_{spec} .

It is expediently to be implemented a short area of insensibility ($\pm e$) or to be used a regulator with a more complex law of regulating in order to be reduced the variations during the movement. The described algorithm allows a zero resistance to be imitated at the joint and the MR should to overcome the resistance of the reduction gear. The direction of movement should be defined according the sign of increasing (??) of the coordinate. It is expediently to be formulated a threshold of distinction d? to be reduced the influence of the interferences over the working algorithm (including the vibrations) while defining the sign of ??. ?? saves its sign from the previous step if |??|=0, while |??|>d? then $D_{sign}= sign??$. T_{spec} changes its sign during the change of he direction of the movement. The described algorithm gives a possibility to be imitated active movements for overcoming the external force acting, not exceeding the value of T_{spec} . The sign of T_{spec} should be changed at the control system in this case.

A reduction gear with a one-directional transmission of the movement will be used

The reduction gear instead of the motor at that case creates the resistant torque, which means that when is defined the direction of movement (defined from the sign of ??) the motor has to be rotated at the same direction when $T_{?}>T_{spec}$. There are two possible states of the motor during the

movement at the defined direction – rotating in the same direction and motor shut off. The value of T_{spec} and the direction of the movement are defined as the previous case.

Some mistakes can occur, for example wrong defining the direction of movement and to be limited such regrettable effects there is a necessity to be applied a possibility to be stopped the procedure under exceeding T? over defined threshold value T?thr. The procedure should be stopped when |T?thr| = T?thr or a component from the force acting over the orthosis exceeds the specified threshold value.

Resistance modeling at the joint using a servo brake

The value of T_{spec} is always positive at this case and is defined using the dependences:

$$T_{spec} = T \text{ or } T_{spec} = + f(?)$$

The brake catches (V_{br}=0) at $|T_{?}| = T_{spec}$ and releases at $|T_{?}| > T_{spec}$ (V_{br}=V_{supl}). The modeling of zero resistance at the joint is not possible at this case. The resistant torque will be defined from the friction forces at the bearing unit at the joint and the brake while the brake is released. The brake will be always released at T_{spec} =0.

5. Structure and basic characteristics of the information - control system

The hardware and software base of the model's information - control system is divided responding to the functions which each of them execute. They could be differentiated into the following groups:

?? Proximate measurement and transformation of signals produced by the model. Those are analogue signals from the potentiomentric sensors of the joint coordinates; analogue signals from the force/torque sensors; digital signals from the switches and other signals from the REHAROB system. The transformation of those signals in digital description is organized in regime 'on-line';

- ?? Indirect receive in regime 'on-line' of values through elementary calculation procedures. Those values are related to the control of the executable mechanisms of the model. Those are for example the direction of change of the joint's coordinate ?_i, the driving values of the controlled resistance torques T_{i(defined)} upon the different coordinates, the current values of the resistance torques T_i which cannot be measured directly from the F/T sensors;
- ?? Control in regime 'on-line' with aim to imitate muscle resistance reactions (spasms);
- ?? Realization of calculation procedures in regime 'off-line' which are in relation basically to the following: further work up of the recorded model data; estimation of the robots motion repetition accuracy; calculation of the model joints' F/T load;
- ?? Establishment of rehabilitation procedures database including the variation of the F/T loads and constrains;
- ?? Establishment of a dialog between the electromechanical model of the human arm and the other equipment of the REHAROB system and the operator.

The described functions require development of a hierarchic structure of the information-control system on three levels (Fig.9) – supervisory level, direct control level and field level. PC executes the highest functional level of the system. Those are functions related to the controlled values and processes, the Programmable Logical Controller (PLC), input of the executable regimes, dialog with the operator and the other REHAROB equipment, creation of database and other The second level executes functions related to formulation of the model direct control together with the work up of the signals produced from the sensors system. The third level has the function of sensors measurement and proximate control of the executable mechanisms.

6. Methods for simulation of muscle resistance

For the purpose of muscle's resistance force simulation are used DC motors coupled with planetary gearboxes, which are built in the kinematics couples. The control system of the motor-gearboxes is presented on Fig.10. It uses a closed circle with feedback for the torque T_i , that is a result of external influence upon the axes of the kinematical couple. The defined values of $T_i(defined)$ must correspond to the desired value of muscle resistance which is in confrontations with the external reaction. $T_i(defined)$ is defined in a block for task formulation (BTF) as a function of the current value of the joint's coordinate $?_i$ and the consecutive number i of the rehabilitation procedure.

Hierarchical structure of the control system

(BTF- block for task formulation; EA – electronic amplifier; MG – DC motor coupled with gearbox; SA – angle sensor; F/T force/torque sensor; TB – transformation block; R – regulator)

References:

Vitliemov V., Mladenov M., Bratanov D. – Electromechanical model of upper human limb, Assistive Technology Research Series Volume 9, Integration of assistive technology in the information age, ICORR'2001 7^{h} International Conference on Rehabilitation Robotics. 2001 Evry, France, pp 117 – 122

Appendix I

Photos of the manufactured parts and some of the commercial components

Photo 1 - Servo brake & mounting plate

Photo 2 – Inside casing of the forearm

Photo 3 - DC Motor – gearbox with attached cone gears

Photo 4 – Clavicle joint

Photo 5 and Photo 6 – Cross yoke

Photo 6

Photo 7 – DC Motor-gearbox

Photo 8-6-component Force/Torque sensor

Photo 9 - The base of the assembled forearm with the DC motor controller

Photo 10 and Photo $11-\mbox{Test}$ and setup of the forearm control

Photo 11 - The forearm attached to the test-bed

